The Relationship Between Gastric Myoelectric Activity and SCN5A Mutation Suggesting Sodium Channelopathy in Patients With Brugada Syndrome and Functional Dyspepsia - A Pilot Study
نویسندگان
چکیده
BACKGROUND/AIMS SCN5A encodes the cardiac-specific Na(V)1.5 sodium channel, and Brugada syndrome is a cardiac conduction disorder associated with sodium channel α-subunit (SCN5A) mutation. The SCN5A-encoded Na(V)1.5 channel is also found on gastrointestinal smooth muscle and interstitial cells of Cajal. We investigated the relationship between functional dyspepsia (FD) and SCN5A mutation to evaluate sodium channelopathy in FD. METHODS Patients with Brugada syndrome or FD were examined using upper endoscopy, electrogastrography (EGG), FD symptom questionnaire based on Rome III criteria and genetic testing for SCN5A mutation. Symptom scores of FD and EGG findings were analyzed according to SCN5A mutation. RESULTS A total of 17 patients (4 Brugada syndrome and 13 FD) participated in the study. An SCN5A mutation was noted in 75.0% of the patients with Brugada syndrome and in 1 (7.7%) of the patients with FD. Of 4 patients with SCN5A mutation, 2 (50%) had FD. Postprandial tachygastria and bradygastria were noted in 2 (50%) and 1 (25%) of the patients with SCN5A mutation, respectively. The EGG findings were not significantly different between positive and negative mutation in 17 patients. CONCLUSIONS Although we did not find statistically significant results, we suggest that it is meaningful to attempt to identify differences in symptoms and gastric myoelectric activity according to the presence of an SCN5A mutation by EGG analysis. The relationship between FD and sodium channelopathy should be elucidated in the future by a large-scale study.
منابع مشابه
ONLINE MUTATION REPORT Unconventional intronic splice site mutation in SCN5A associates with cardiac sodium channelopathy
Background: Mutations in the cardiac sodium channel, SCN5A, have been associated with one type of long-QT syndrome, with isolated cardiac conduction defects and Brugada syndrome. The sodium channelopathies exhibit marked variation in clinical phenotypes. The mechanisms underlying the phenotypical diversity, however, remain unknown. Exonic SCN5A mutations can be detected in 20% of Brugada syndro...
متن کاملUnconventional intronic splice site mutation in SCN5A associates with cardiac sodium channelopathy.
BACKGROUND Mutations in the cardiac sodium channel, SCN5A, have been associated with one type of long-QT syndrome, with isolated cardiac conduction defects and Brugada syndrome. The sodium channelopathies exhibit marked variation in clinical phenotypes. The mechanisms underlying the phenotypical diversity, however, remain unknown. Exonic SCN5A mutations can be detected in 20% of Brugada syndrom...
متن کاملGenetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias.
SCN5A encodes the α subunit of the major cardiac sodium channel Na(V)1.5. Mutations in SCN5A are associated with conduction disease and ventricular fibrillation (VF); however, the mechanisms that link loss of sodium channel function to arrhythmic instability remain unresolved. Here, we generated a large-animal model of a human cardiac sodium channelopathy in pigs, which have cardiac structure a...
متن کاملSodium channelopathy underlying familial sick sinus syndrome with early onset and predominantly male characteristics.
BACKGROUND Sick sinus syndrome (SSS) is a common arrhythmia often associated with aging or organic heart diseases but may also occur in a familial form with a variable mode of inheritance. Despite the identification of causative genes, including cardiac Na channel (SCN5A), the pathogenesis and molecular epidemiology of familial SSS remain undetermined primarily because of its rarity. METHODS ...
متن کاملGenetic analysis of Brugada syndrome and congenital long-QT syndrome type 3 in the Chinese
BACKGROUND Brugada syndrome and congenital long-QT syndrome (LQTS) type 3 (LQT3) are 2 inherited conditions of abnormal cardiac excitability characterized clinically by an increased risk of ventricular tachyarrhythmias. SCN5A gene that encodes the cardiac sodium channel α subunit is responsible for the 2 diseases, and more work is needed to improve correlations between SCN5A genotypes and assoc...
متن کامل